
Towards formal methods for mathematical modeling

Ursula Martin

SRI International, Menlo Park CA

University of St Andrews, Scotland

um@dcs.st-and.ac.uk

Abstract

We survey mathematical modeling, the mathe-
matical and computational technologies upon which
it relies, and the potential sources of error. We as-
sess formal methods and computational logic in this
light, suggesting that certain well worn paths may
have little to o�er. We identify as opportunities
for the future: analyzing requirements, assumptions
and proof obligations for the assessment and con�r-
mation of models, extending such techniques to ar-
chitectures for heterogeneous distributed models with
legacy components, using computational logic to ex-
tend the capabilities of computer algebra systems,
and techniques for symbolic analysis.

1 Introduction

The purpose of this paper is to assess formal
methods and computational logic from the point
of view of mathematical modeling. It forms part
of a larger research program assessing formal meth-
ods and computational logic for mathematics and
its applications.

The techniques of mathematical modeling, that
is of regarding a physical phenomenon as a dynam-
ical system for the purposes of understanding and
prediction, arose in the physical sciences during the
twentieth century, were used widely in meteorolog-
ical and defense applications and later spread to
environmental, biological and geological modeling.
They were transformed by modern computation,
and by increasing reliance on modeling in many as-
pects of public policy, and have also become the key-
stone of US undergraduate math curriculum reform
[38]. This paper concentrates on the issues aris-
ing in bioscience and environmental science, rather
than on physical sciences, engineering or control
theory: in particular we are considering computa-

tional rather than physical models.

In the �rst part of the paper we survey math-
ematical modeling, the math and software that it
relies upon, and possible sources of error and user
concern. We go into some detail, on the grounds
that assessing how formal methods might be used
in practice requires a general understanding of what
the practice of modeling is. In the second part we
consider how formal methods and computational
logic might address these concerns, and identify
some possible new directions.

Section 2 is a methodological aside. Section
3 contains an account of mathematical modeling,
which we encapsulate as a \purposeful representa-
tion of reality". A modeler devises a \model world"
to investigate some \purpose" in the \real world".
A mathematical \model" of the model world is con-
structed using dynamical systems, and the mod-
eler reasons within it. Almost universally today the
reasoning is done with the aid of numeric or sym-
bolic computation, so an \implementation" of the
mathematical model is built in a computer system:
from the \implementation" conclusions are drawn
about the \model" or the \model world" and as-
sessed against the hypotheses of the \model world"
or against observations of the \real world". We may
view this as a pipeline: freality+purposesg ! model
world ! model ! implementation.

Thus modeling relies on two underlying tech-
nologies: the mathematical theories of di�erential
equations and dynamical systems, and the compu-
tational tools of numeric or symbolic computation.

In Section 4 we give a brief account of the �rst
of these, the mathematical theories. We describe
the kind of reasoning that is typically done, and
assess the correctness issues. We note in particular
that the mathematician developing the theories, the
toolsmith using them to devise algorithms and the
modeler using those algorithms may have somewhat
di�erent perspectives.



In Section 5 we consider the second technology,
and describe numeric and symbolic computation
and some of the correctness concerns that arise. Nu-
merical systems are widely used because they always
give an answer: it is suggested that general software
engineering issues rather than bugs in algorithms or

oating point arithmetic are the main cause of er-
ror. Symbolic computation systems are much less

exible, and further problems arise because of fun-
damental design issues which mean that continuous
math is sometimes handled incorrectly.

Sections 4 and 5 considered the underlying tech-
nologies: in Section 6 we return to the model-
ing process itself and assess correctness concerns.
While these can arise anywhere in the pipeline, it
is the assessment of a \model" or \model world",
against competitors and against purposes that at-
tracts most attention in the modeling community,
and in matters such as environmental prediction (for
example, querying assumptions about ground water
penetration) they can be subject to heated debate.
In large or legacy models even tracking built-in as-
sumptions can be hard.

Section 7 addresses how computational logic and
formal methods may address some of the correct-
ness concerns raised in the previous sections. The
correctness of the mathematical and computational
technologies can in principle be addressed using
techniques of computational logic: we indicate the
main notions for both. In particular we report
brie
y on our own work using heavy duty theo-
rem proving in PVS to provide convenient embed-
ded reasoning tools for computational mathemat-
ics systems. However we assert that in general the
modeling community are users rather than creators
of mathematics and software, and are not particu-
larly concerned to have formal developments of ei-
ther the underlying material or its applications in
modeling, or to replace them with new foundational
approaches: these are all regarded loosely speaking
as \solved problems". While in principle techniques
based on improved forms of symbolic computation,
or on computational logic, would allow richer rea-
soning about models, it is hard to see them match-
ing the 
exibility of numerical systems or overcom-
ing the investment in existing techniques.

Correctness concerns about the modeling pipe-
line involve, in so far as they can be formalized,
tracking of requirements and assumptions, and here
we judge there to be much greater potential for for-
mal methods from the user's point of view. We re-
port brie
y on our own experience with light for-
mal methods for tracking requirements, assump-

tions and proof obligations in computational math-
ematics systems.

In the light of the above Section 8 sets out four
main opportunities for the future: analyzing re-
quirements, assumptions and proof obligations for
the assessment and con�rmation of models, extend-
ing such techniques to architectures for heteroge-
neous distributed models with legacy components,
using computational logic to extend the capabili-
ties of computer algebra systems and improved tech-
niques for symbolic analysis.

2 A methodological note

It would be easy enough to tell a rosy story within
the contemporary rhetoric of formal methods and
computational logic of their potential for mathe-
matical modeling, illustrated with anecdotes of un-
reliable predictions from unsound models or bugs
in numerical code. We might then, with some ef-
fort, treat a simple di�erential equation or verify a
numerical algorithm within our formalism of choice,
argue with the aid of a large bibliography about how
such methods are \growing in importance", \vital
for safety critical applications of mathematical mod-
eling", \essential for mathematicians in developing
trusted proofs" and so forth, and conclude with an
exhortation to the academic and commercial mod-
eling community to take up our ideas forthwith.

We have attempted a somewhat di�erent ap-
proach here, by identifying, albeit informally, the
practice and concerns of the modeling community
and how formal methods techniques might address
them.

The identi�cation of \practice" in a discipline in-
volves �nding out what people actually do, rather
than what they say they do, or what others think
they should do. Thus for example in [25] we showed
that practice in pure mathematics research does
not, as an outsider might suppose, consist in rig-
orous formal development but rather in the devel-
opment of \good enough" proofs: this explains why
computational logic engines are hardly used by pure
mathematicians.

For sociologists such as Latour [22] identifying
practice involves detailed observations over many
months in laboratories, and careful enquiry as to
whether there is any such thing as a universal
or context-independent notion of scienti�c method,
rather than \particular courses of action with ma-
terials to hand" [24].

For the purposes of this paper we gained an
overview from textbooks, university courses, meet-



ings, seminars, newsgroups, bug-reports and dis-
cussions with re
ective practitioners, who included
both developers and users of such software1. I am
not aware of any thorough study into correctness
concerns for modeling and what causes errors, al-
though Mackenzie has touched on such matters in
his sociological account of the development of nu-
clear weaponry [24]. Certainly the matter has not
received the attention given to safety-critical sys-
tems. This paper can only be regarded as a pilot
investigation: I conclude that, while certain indi-
vidual incidents have been noted and studied, in
general correctness is taken for granted, and where
it is discussed it is the correspondence of models to
reality, rather than the correctness of the underlying
mathematics or software, that causes concern.

3 What is a model?

What is a model? A mathematical representa-
tion of reality? What is reality? What is a math-
ematical representation of it? Is it \out there" or
\purely formal", or constructed in the minds of sci-
entists with all kinds of motives and purposes, in-
cluding the quest for truth (whatever that might
be)? Questions of this kind have occupied philoso-
phers of science for centuries. For this paper we
adopt a work-a-day de�nition based on the standard
student text of Mooney and Swift [28]: a mathemat-
ical model is a purposeful representation of reality
using the tools and substance of mathematics, in-
cluding computation.

A classic example is the predator-prey model
whose purpose is to understand the long-term be-
havior of populations of predators (for example
lynx) and prey (for example hares) which mani-
fest cyclical behavior: as lynx numbers x rise more
hares are eaten, so hare numbers y drop, so lynx
numbers drop, so more hares survive, so lynx have
more to eat, so lynx numbers increase, and so on.
This is modeled by two di�erential equations, where
�; �; 
; Æ represent parameters which will vary for
di�erent populations.

(
dx
dt
dy
dt

) = (
� ��x

y �Æ )(

x
y
) (1)

We call this Model PP1. From these equations we
may prove that y�e��yx
e�Æy = K and hence de-
duce that in the model x and y do indeed manifest
cyclical behavior over time for certain values of the
parameters. Even without this analytic formula we

1See acknowledgements section for more details

can implement the equations numerically and hence
draw graphs of x; y and t to display the cyclical be-
havior.

A simple account of modeling considers \the real
world" (including hare and lynx), a \purpose" (un-
derstanding population change in hare and lynx),
the \model world" consisting of assumptions we
have made or chosen about the real world (for exam-
ple that lynx die when there are no hares to eat), the
mathematical \model" we have built of our model
world using dynamical systems,2 and the \imple-
mentation" of that model in a computer system.
From the \model" or its \implementation" we can
draw conclusions about the \model world" which we
can then assess against the hypotheses of the model
or against experimental or other understanding of
\the real world". We may view this as a pipeline:
freality+purposesg ! model world ! model ! im-
plementation.

The predator-prey model PP1 above is an ab-
straction, whose purpose is to investigate the ap-
parent cyclical nature of such populations. It tells
us that if the hypotheses in the model world about
the behavior of hare and lynx are satis�ed, and
if �; �; 
; Æ take certain values, then certain conse-
quences ensue in the model, and hence by implica-
tion in the \model world". We may then use domain
knowledge to give an interpretation of our conclu-
sions for \the real world".

If we wanted to study a particular population of
hares and lynx this model would not be of much
use. We would need a di�erent \model world" and
a more complicated \model", which we denote by
PP2. We would take other phenomena into account,
for example what hares eat, and consider data, ei-
ther real or simulated, on weather patterns or grass
growth for our particular population. We would
probably no longer have an analytical solution, and
would have to rely on an \implementation" to ob-
tain numerical, graphical or visual estimates for long
term behavior. These estimates would still be con-
tingent upon our assumptions, and the nature and
quality of the data we used. PP2 might not man-
ifest cyclical behavior at all: it might not include
the equations of PP1. The mathematical relation-
ship between our two models might be complex: it
would be unlikely that, in formal method terms,
one was a simple re�nement of the other for in-
stance. The distinction between these two kinds of
model, roughly speaking the �rst more concerned
with abstract principles or putative laws of nature,

2For the purposes of this paper we ignore stochastic and
discrete aspects



the second with simulations and predictions of phe-
nomena, has sometimes been drawn by calling the
former \models" and the latter \simulations". How-
ever there is no hard and fast distinction.

Both PP1 and PP2 are, in modeling terms, fairly
small and straightforward, in contrast to global
models of climate or population, re�ned over many
years with complex data sets.

Once we have a model, or several models, we may
investigate their solution and other properties, ei-
ther mathematically or through an implementation.
Models are assessed and evaluated against their pur-
poses, or against other models that address the same
or related purposes. Of particular concern is the
de�nition and assessment of correctness.

4 Mathematical techniques

The theory

In this section we give a summary of some of the the-
ory of di�erential equations and dynamical systems
from the point of view of mathematical modeling
applications.

What do we mean by a di�erential equation, and
a solution? At an elementary level in a modeling
text such as Mooney and Swift [28] the notion is
often given only by example: for instance suppose
we wish to model the motion of a particle in terms
of the time and distance from an initial point (y)
and the acceleration (y00 = d2y=dt2). The equation

y00(t) + y(t) = 0 (2)

describes the motion at time t; any solution has the
form �(t) = Asin(t) + Bcos(t) where A and B are
arbitrary constants, and a solution satisfying the
initial conditions y(0) = 1; y0(0) = 2 is given by
�(t) = 2sin(t) + cos(t): A solution satisfying the
initial conditions can be evaluated at any value of t,
so that for our solution � at time t = �=2 the posi-
tion will be given by �(�=2) = 2. This equation has
an explicit mathematical solution (we call this an
analytic solution), but for many equations we may
know only of the existence of such solutions, and
numerical solutions at particular points (subject to
the accuracy constraints of numerical analysis) may
be all that are available to us.

\Solving" an equation involving an unknown
function y and its derivatives, and conditions on the
value of y at certain points, involves �nding a partic-
ular (some possible such y) or a general (all possible
such y) analytic solution in terms of known func-
tions. In texts at the level of [28] various standard

\cook-book" techniques are given, accompanied by
reassurance and motivation for the reader. There is
also particular stress on determining the qualitative
or limiting behavior of the solution: does it decay
over time for example.

Thus for example [28] contains the following
recipe for solving �rst order linear di�erential equa-
tions of the form

dy

dx
+ a(x)y = b(x) : (3)

the general solution is (sic, including sloppy variable
naming)

y(x) =
1

�(x)
(

Z
�(x)b(x)dx + C) (4)

where �(x) = exp(
R
a(x)dx): This description elides

many issues concerned with exactly when functions
are de�ned or di�erentiable, or solutions exist. The
standard approach of an undergraduate course in
di�erential equations makes matters more precise:
Suppose that a and b are continuous functions on an
interval I: Let A(x) be a function such that dA=dx =
a(x). If C is any constant then the function � given
by

�(x) = exp(�A(x))(
xZ

x0

exp(A(t))b(t)dt + C) (5)

where x0 is in I; is a solution of (3), and every
solution has this form.

The standard treatment continues by considering
existence proofs for solutions. A particularly impor-
tant class is that of linear systems, of the form

L(y) = y(n)+a1(x)y
(n�1)+: : :+an(x)y = b(y); (6)

where under suitable conditions solutions always ex-
ist, though they may not have a simple closed form
representation.

In the case when all the ai are constant the so-
lutions to L(y) = 0 are found by computing the
eigenvalues, or roots of the characteristic equation

�n + a1�
n�1 + : : :+ an = 0: (7)

Thus for example when n = 2 the equation

L(y) = y00 + 2by0 + cy = 0 (8)

has general solution given by

�(x) =
exp(�bx)(A +Bx); 
 = 0

exp(�bx)(A exp(
p

x) +B exp(�p
x)); 
 > 0

exp(�bx)(Acos(xp�
) +Bsin(x
p�
)); 
 < 0

(9)



where 
 = b2 � c: This description of the solution
may be further re�ned to include its qualitative be-
havior: for example in case 
 = 0, the system oscil-
lates, and if b > 0 it tends to zero (is damped), if
b < 0, it tends to in�nity and if b = 0 it is stable.

Current mathematical research emphasizes dy-
namical systems, that is, roughly speaking, solution
spaces of systems of di�erential equations like PP1.
Linear systems in n variables can be expressed as a
vector equation X0 = AX; where A is an n�n ma-
trix, and the solutions are given in terms of eigen-
values of A. This again allows us to predict the
limiting behavior of such a system, and to identify
�xed points (equilibrium points) where X0 = 0; and
behavior near to them: for example does a point
near the equilibrium point move towards it (a sink)
or away from it (a source). In two dimensions an
analysis like (9), called a phase plane analysis, is
possible: in dimensions above two chaotic phenom-
ena can occur.

For non-linear systems like the predator-prey
model there are extensive theories of existence and
uniqueness of solutions. An important practical
technique for investigating qualitative behavior near
a �xed point is that of taking a linear approxima-
tion there and using this to do a phase plane analy-
sis. The full mathematical analysis of such behavior,
and of the underlying dynamical systems, possible
chaotic behavior and so forth, requires the full ap-
paratus of modern di�erential geometry.

Applications

In the initial stages the modeler may want to ma-
nipulate and transform the model and get a few
rough assessments of its behavior. The next stage
would be a more detailed investigation, to compare
it with alternatives, to calibrate it against data,
theory or other models, and to assess its perfor-
mance. At a more mature stage models may be used
for prediction or for reference points against other
models, as components in larger systems, or re�ned
as new data or theoretical understanding becomes
available.

For example Hammersley's [12] maxims for ma-
nipulators at an early stage include: \clean up the
notation, choose suitable units, reduce the number
of variables, and avoid rigor like the plague as it
only leads to rigour mortis", to which one would
probably add today \visualize the solution".

A typical more detailed investigation might in-
clude:

� solving a system of di�erential equations sub-

ject to initial values or boundary conditions: ei-
ther analytically or numerically

� reachability analysis: determining if there is an
analytic or numeric solution satisfying a set of
constraints, typically that it starts in one region
and passes through another. Thus in example
(2) the point (�=2; 2) is reachable from (0; 1),
but (r; 3) is unreachable for any value of r

� identi�cation of behavior near a stationary
point: for example by a phase plane analysis

� limiting behavior over time: for example by an
eigenvalue analysis generalizing (9)

� perturbation analysis: to identify behaviors of
the model under local variations

� behavior as some parameter varies: for example
changes in the phase plane as a coeÆcient varies

Taking a formal methods perspective one might
expect to see more general reasoning about prop-
erties of the solution, for example using temporal
logic. Recent work in the hybrid systems commu-
nity addresses this for control systems using tools
such as HyTech [17], and Dutertre [7] gives exam-
ples of reasoning about upper bounds in the require-
ments of an avionics application, but such work does
not seem to be considered at all mainstream in the
modeling community. For example searches in Cite-
seer [3] turn up little of relevance.

Correctness issues

In analyzing correctness issues for modeling we �rst
turn to the correctness of the underlying mathemat-
ics.

We note �rst that applications of modeling are
not in practice a particularly rich source of novel
mathematics. There is in general [28] little en-
thusiasm for spending a long time developing new
equations for a particular modeling problem. Stan-
dard techniques, like linearisation or power-series
approximation, for replacing one equation with an-
other that behaves in roughly the same way, may
be suÆcient when experimenting with a number of
models at an early stage. The community tends to
work with a smaller number of systems which are
reasonably well understood or mathematically well-
behaved and which experience or consensus deems
suÆcient for the domain at hand.

The researcher in dynamical systems, the applied
mathematician or numerical analyst `toolsmith' and



the modeler applying those techniques are doing dif-
ferent things. The researcher is concerned with gen-
eral theories about the existence of solutions or the
behavior of families of systems. The toolsmith is
developing e�ective techniques for solving problems
like those above, with the researcher's work to as-
sure correctness. Modelers usually want to take the
underlying mathematics for granted, concentrating
instead on the modeling issues that arise: their
mathematical interest or understanding is perhaps
unlikely to go beyond a work-a-day account at the
level of [28]. In particular the researcher is doing
proofs in the underlying theories, the toolsmith is
doing proofs about hand or machine computation
techniques, and the modeler is applying those com-
putation techniques.

We have discussed at length elsewhere [25] atti-
tudes to correctness in the mathematical commu-
nity: we identi�ed current mathematical practice
with producing conjectural mathematical knowl-
edge by means of speculation, heuristic arguments,
examples and experiments, which may then be con-
�rmed as theorems by producing proofs in accor-
dance with a community standard of rigour, which
may be read by the community in a variety of ways.
Most of the mathematics used in applications of
modeling is not particularly novel, and has been
subject to the usual mechanisms of community in-
spection through courses and text books over many
years: there does not seem to be much concern from
the mathematician, the toolsmith or the modeler
over its correctness. As is usual in contemporary
mathematical culture few are much concerned with
formal proof or matters of foundation.

When a new technique arises, for example the
recent growth of interest in level set methods [35],
the focus of the discussion is generally on new ap-
plications, or on faster or better (for example with
less instability near cusps) performance in old ones,
rather than on extended discussions of correctness.

5 Computational techniques

Numerical methods

The standard, and almost universal, approach to
computation for modeling, is numerical methods,
which have been part of applied mathematics and
the physical sciences for almost �fty years. They
are widely available through standard commercial
libraries such as NAG [29] and MatLab [27], and
provide the basis for large software systems, usually
written in FORTRAN or C and used in chemical,

physical or astronomical research as well as in prac-
tical �elds like engineering, meteorology and aero-
nautics and increasingly today in visualization and
animation. Purpose-built implementations, for ex-
ample, for biosciences, environmental modeling or
geology are built on top of general purpose tools
such as Simulink [36] which provides a graphical in-
terface to MatLab. For example Simulink may eas-
ily be used to run the predator-prey model for dif-
ferent values of the parameters, generating numeric
or graphical output, from which various properties
of the system may be inferred.

In addition such systems can readily accommo-
date other inputs, for example from sensors or mea-
suring devices, or other numerical procedures, such
as curve �tting. For many problems, for example
the investigation of chaotic phenomena, there are
no alternative standard techniques.

From the modelers point of view the main ad-
vantage of numerical systems is that they will al-
ways give an answer, and despite the negative ev-
idence we cite below, with suÆcient user expertise
are accepted as doing so suÆciently quickly and ac-
curately, with established protocols for testing and
error analysis. Numerical methods and software like
NAG or Simulink are so standard and so widely
used that it is hard to see them being displaced by
other techniques. However the output, and proper-
ties derived from it, will always be numeric and not
analytic, and support for investigating properties of
the solution or parameters may be limited.

Numerical methods: correctness issues

The user of such systems can use default settings
and work in ignorance of the underlying numerics,
or take more detailed control using standard tech-
niques of numerical analysis [18] to ensure results
of required accuracy. Indeed, faster and more ac-
curate numerical methods have been the main re-
search thrust in numerical analysis over the past
forty years.

A particular issue in numerical work is correct-
ness of 
oating point implementation (for example
the famous Pentium bug): the consistent handling
of 
oating point arithmetic or the translation be-
tween machines with di�erent word-lengths are re-
curring legacy issues. Another is convergence crite-
ria: is the implementation robust enough to produce
the same answer again for the same inputs. Kahan
[21] maintains a web-site of known problems.

Yet problems persist and even expert users may
be unaware of them. The author was told of a



complex bug in the British Met oÆce implemen-
tation of the multi-grid �nite element method that
was worth about 2% accuracy in weather forecasts.
Hatton [15] reports on observations of nine indepen-
dently developed large programs for seismic data
processing, and shows that although the programs
used the same data and were developed to the same
speci�cations in the same language (FORTRAN),
numerical disagreement grows at a rate of 1% in
average absolute di�erence per 4000 lines of imple-
mented code. The programs were used to analyze
large scienti�c datasets where typically results ex-
pect around 0.001% accuracy. He concluded that
in general problems were caused not by compiler or
hardware errors, but by software faults, often o�-
by-one errors. However the matter has not received
much recognition in the modeling community [16].

Symbolic computation

Symbolic computation techniques, such as those
embodied in Maple or Mathematica, appear to o�er
a wide range of additional facilities to the modeler,
especially when combined with numerical methods.
Thus the dsolve command in Maple, or the DSolve
command in Mathematica, can solve a wide variety
of di�erential equations analytically, and the user
can further interact with the system or write their
own code, to investigate their properties. As the ac-
count of the mathematics above demonstrates, im-
plementations rely on other symbolic computation
techniques, such as integration, polynomial solving
and computing eigenvalues and eigenvectors.

There is continuing lively debate over the respec-
tive merits of symbolic and numeric computation,
and active research on the best way to combine
the two approaches. The main drawback from the
user's point of view is that computer algebra sys-
tems are simply unable to solve many of the prob-
lems listed above, either because of unsolvability or
intractability. Even if there are symbolic solution
techniques such systems do not scale, and there are
not in general well-developed techniques for combin-
ing numeric input or techniques with symbolic ones:
hence they lack the 
exibility of numerical systems.

Thus for example while symbolic techniques for
reachability analysis using quanti�er elimination
have been investigated [20], they are in general dou-
ble exponential, and intractable in all but the small-
est examples.

There are a few cases where symbolic techniques
are better developed than numeric ones, for example
the use of model checking in systems like Hytech to

reason about hybrid systems, discrete combinations
of control systems. There are also a few applications
where symbolic systems are used in preference to
numerical systems, for example in robotic or satel-
lite motion planning.

Symbolic computation: correctness issues

By contrast with numerical techniques, users often
�nd symbolic computation or computer algebra sys-
tems (CAS) like Maple frustrating and hard to use:
see Wester [37] for a survey. Even in situations
where the user is expecting them to work they may
fail to produce an \obvious" answer, or produce un-
expected or wrong answers, and their performance
can be very unpredictable, varying widely on appar-
ently similar inputs.

One cause of error is failure to check side-
conditions: this is not so much an error as a de-
sign decision for ease of use, since even small proce-
dures may produce large numbers of side conditions,
often intractable or undecidable. This illustrates
a more general design issue: there are many ex-
amples of processes (for example de�nite symbolic
integration via the Fundamental Theorem of Cal-
culus) where a CAS may be able to compute an
answer, sometimes correct, on a large class of in-
puts, be provably sound on only a subclass of those
inputs (where the function is continuous) and be
able to check soundness easily on a smaller subclass
still (for example, since continuity is undecidable,
systems use a simpler check for functions with no
potential poles or discontinuities). Some CAS are
cautious, only giving an answer when pre-conditions
are satis�ed: however this means they may fail on
quite simple queries. Others try and propagate the
side conditions to inform the user, though this can
rapidly lead to voluminous output. Mathematica
and Maple generally attempt to return an answer
whenever they can and leave to the user the burden
of checking correctness. In [1] we have analyzed this
in some detail for symbolic integration, and pro-
posed a solution based on veri�ed look-up tables.
We extended our ideas to dynamical systems and
mathematical modeling in [26], with a suite of PVS
tools to check de�nedness and continuity, callable
from Maple.

However there is a deeper reason for appar-
ent unsoundness than failure to check for side-
conditions. Formally CAS compute inde�nite in-
tegrals and solve di�erential equations within the
algebraic framework of the theory of di�erential
�elds [2]: �elds with an operator satisfying d(f:g) =



(df):g+f:(dg): When using an inde�nite integral as
part of an analytic calculation, for example solving
a di�erential equation, the answers obtained alge-
braically may di�er signi�cantly from what is ex-
pected. For example, viewed as an element of a dif-
ferential �eld, the derivative of f(x) = tan�1(x) +
tan�1(1=x) is zero, and it follows that f(x) is a
constant. Viewed analytically it is a step function
with the value ��=2 for x < 0 and �=2 for x > 0.
Thus an \unexpected" answer to a query involving
f(x) may be correct within the theory of di�erential
�elds, but incorrect in the usual analytic framework
for di�erential equations we have presented above.
Similarly it is easy to get Maple's dsolve command
to display behavior which is unsound analytically,
as it applies (4) without checking continuity of a
and b.

This analysis should be kept in perspective how-
ever: developers of the symbolic software systems
GAP [34], axi.om[19] and Aldor [19] indicate that
the majority of bug reports tend to uncover user
misunderstanding, performance, or systems 
aws,
especially to do with portability, rather than prob-
lems with the underlying mathematics or algo-
rithms. For example of approximately 1100 bug re-
ports on Aldor only one reported a problem with an
incorrect library implementation, involving a failure
to detect a division by zero.

6 Correctness concerns for modeling

We now return to correctness concerns for
the modeling process, and consider the pipeline,
freality+ purposesg ! model world ! model ! im-
plementation.

One may �rst ask whether the \implementa-
tion" is a correct implementation of the underlying
\model". In particular we may ask which aspects
of its behavior are artifacts of the \implementa-
tion" (for example a poor choice of random number
generator) rather than consequences of the model,
or what hidden or explicit assumptions about the
model have been made and how they a�ect the uses
to which the system has been put. For example, if
the system is used in a new application and predicts
that x > 3, is this a consequence of the model, or
of some implementation decision being called upon
outside its domain of validity.

Heterogeneous distributed implementations of-
ten incorporate large legacy systems where the un-
derlying assumptions may have varied over time,
where later implementors may not have fully un-
derstood the original assumptions, or have incorpo-

rated variations based on new results, or where the
underlying models may be incompatible. Thus for
example an implementor may have hard-wired an
implicit assumption about, say, the life span of a
predator which is totally inaccessible to later users,
and may lead to nonsensical results when combined
with a di�erent implementation.

The correctness of an implementation concerns
how the \implementation" of a model matches the
\model": of much greater concern in the model-
ing community is the assessment of the \model"
against its \purposes", or against other models with
the same or related purposes. In such discussions
the \model" and its \implementation" may often
be identi�ed, particularly if we only have numerical
information about the model. An excellent account
from the point of view of environmental predictions
is given in Oreskes [31].

The correctness of a \model" is in any case con-
tingent: it says that under the hypotheses of the
\model world" certain consequences occur, and the
output of the implementation may be regarded as
a prediction, with estimates of error being provided
by mathematical analysis in the light of the model
and the reliability of the data. The hypotheses of
the model world may not necessarily be very clear
or explicit, being part of the assumed background
knowledge of domain experts. Care needs to be
taken with data: for example a famous data-set on
Canadian hare and lynx populations was discredited
[11] when it was pointed out that the lynx and hares
lived far apart and had little opportunity to eat each
other. Our ability to test the correspondence of
the \model world" with the \real world" depends in
part on our understanding of the phenomena, and in
part on the availability of suÆciently accurate data.
So questions of correctness of a particular model are
complicated and often subject to heated debate or
compromise.

In some cases predictions may be easy to check:
the occurrence of the full moon for example is read-
ily observed and not subject to major disagreement.
So if a model with a trustworthy implementation
whose purpose is to predict the full moon fails to do
so we may reasonably assume the \model", or the
\model world" is incorrect. Even then it may not be
at all clear which assumption or equation has led to
the error. However most models cannot be checked
in so straightforward a way: for example the aver-
age temperature of the earth needed in models of
global warming is hard to measure or estimate, and
in other cases it may be infeasible to check the pre-
dictions: for example safety thresholds for aircraft



loads or discharge of pollutants.
Models may be known by insiders to be in-

accurate, but none-the-less used as a best guess,
or treated as accurate even though they are not.
Mackenzie [24] reports on the debate surrounding
the abandonment of nuclear weapons testing, draw-
ing attention to the importance of tacit knowledge
in the practical development of nuclear weapons,
and the possibility that they might be \uninvented"
if this tacit knowledge is lost. He reports scientists'
claims that a computer prediction is \pretty good"
if the actual yield is within 25% of prediction, and
notes that during the moratorium on nuclear testing
in the 1950s dependence on and con�dence in com-
puter programs increased: according to an intervie-
wee \people start to believe the codes are actually
true, to lose touch with reality.".

Experts may disagree as to the acceptability of
the model: Shrader-Frechette [39] reports disagree-
ment among two expert committees in the 1993 as-
sessment of the proposed Yucca Mountain Waste
repository site as to whether the large and well-
established geological models used could reliably
predict volcanic activity. We may have several com-
peting models: for example Gilpin and Alaya [9]
used experiments on competing populations of fruit-

ies to test di�erent variants of the predator-prey
\model" and \model world" against the purpose of
accurate prediction of fruit-
y populations. They
compared their models against the accuracy of their
results, favoring those where the model world made
most sense biologically, and those where the model
was simple and general3. However it may not be
the case that we can always chose among compet-
ing models so readily.

Matters become more complex when we con-
sider many-layered models, where for example test-
ing against \the real world" may mean in practice
testing against another \implementation" of a dif-
ferent \model" that has acquired the standing of
\the real world" for practical purposes. In assessing
model PP2 for example we would need numbers of
hares and lynx: would we do every count by hand
or use \implementations" of established \models"
of wild-life numbers calibrated with key data from
�eld studies. And how might the assumptions of
the latter a�ect the predictions of PP2?

As we have indicated a particular concern is the
combining of di�erent models or implementations.

3A much argued philosophical point. It has been sug-
gested [31] that the quest for simplicity and generality, identi-
�ed with Ockham's Razor, owes more to seventeenth century
theology and mathematical convenience than any evidence
that simple models are better predictors than complex ones.

Di�erent models may address di�erent parts of our
purposes di�erently, or in choosing to model part of
a larger scheme we may have to choose between sev-
eral models none of which are entirely satisfactory.
Assumptions may be incompatible or unclear: this
is a particular issue for legacy components where as-
sumptions may be concealed, contradictory, or have
changed over time.

7 How can formal methods con-

tribute?

Putting together the ingredients described above
we may identify the business of modeling with
�rst developing generic mathematical theories, al-
gorithms, and implementations, both numeric and
symbolic, and then modeling particular systems by
implementing them within the chosen framework as
part of the modeling pipeline. Correctness concerns
may be raised at all levels of the process: the math-
ematics, the software systems, the implementations
of the model and the correspondence of the model
with reality. As far as we can tell this last is of most
concern to the modeling community.

Formal methods, broadly construed, o�ers a va-
riety of approaches.

Mathematical theories

Since the pioneering work of de Bruijn's AU-
TOMATH [4], developed in 1967, the theories of
analysis which underlie di�erential equations and
mathematical modeling have been developed inside
various theorem provers: for recent manifestations
see Dutertre's implementation of the reals inside
PVS [7] or Harrison's development as far as inte-
gration in HOL [14]. As far as we are aware a full
machine veri�cation of the mathematics outlined in
the previous sections has not yet been done, but it
is perfectly feasible in a number of systems, using
classical or constructive techniques. However while
this is possible, it is hard to see how it would serve
the needs of the modeling community, who regard
the soundness of the underlying math as a \solved
problem", established over many years in text-books
and courses. They rely on mathematicians, and
the usual community mechanisms of mathematics,
which are remarkably averse to rigour [25], to es-
tablish correctness of the necessary mathematics: I
have identi�ed little interest in human or machine
formal proof for the classical mathematics under-
lying the subject, the work of the toolsmith, or its
routine application in modeling. This is not to write



o� machine checked mathematics as an endeavor,
merely to say that this community sees little point
to it. While logicians [8] have considered alterna-
tive axiomatizations for di�erential analysis I have
identi�ed no interest among the mainstream math-
ematical or modeling community in these matters.

Once such a development had been done it would,
in principle, be possible to investigate our mod-
els directly within the prover, recasting the various
queries outlined in Section 4 as proof requirements,
for example the reachability results of example (2).
However it is hard to see how such systems would
overcome the diÆculties we have already discussed
for symbolic computation systems: infeasibility or
intractibility mean that often there will not be an
automatic proof procedure, and users will need to
produce a manual proof of something whose numer-
ical equivalent could be produced automatically. In
addition any such system would need a computa-
tional component if it was to match the exploratory
capacity of existing techniques, and as Section 4
shows many of the computations or proofs would re-
quire advanced symbolic computation facilities, for
example to calculate eigenvalues.

Against this however we should set the advan-
tages of abstraction, higher level proof and the han-
dling of parameters: for example it takes laborious
numerical simulation to investigate changes in the
phase plane as a coeÆcient varies, whereas a sym-
bolic approach merely produces a proof obligation
to be discharged.

In addition, as we have argued elsewhere [25] spe-
cialized decision procedures may prove useful for
some queries, for example quanti�er elimination for
reachability [20].

Computational techniques

As we have seen general software engineering issues
have been identi�ed as a major source of problems in
both numerical and symbolic software: since these
problems and formal methods approaches to them
are not peculiar to modeling we do not discuss them
further here. The modeling community relies on the
usual mechanisms of software development, which
are averse to rigour, to establish trustworthiness of
its computer systems: I have identi�ed little inter-
est among commercial vendors in classical formal
methods techniques.

It is in principle possible to implement numerical
or symbolic computation inside a theorem prover,
gaining reliability at a cost in performance, and
both approaches have received much attention in

recent years. The notorious \Pentium bug" drew
attention to the unreliability of 
oating point imple-
mentations, and inspired Harrison's development of

oating point arithmetic in HOL [13] which has had
considerable commercial impact in the veri�cation
of hardware.

Such implementations of computer algebra sys-
tems have proved harder, partly because, as we
have indicated, they require implementation inside
a prover of specialized algorithms such as factoriza-
tion. In any case, some of the unexpected behaviors
of computer algebra systems arise from the alge-
braic representation of analysis: these would not be
solved by re-implementation inside a prover. We re-
port elsewhere [26] on an alternative approach: we
built a toolkit in the PVS [32] theorem prover which
automatically checks pre and side conditions such
as continuity to computer algebra algorithms such
as Maple's dsolve, thus addressing some of the dif-
�culties caused by unsoundness in using computer
algebra systems for analytic work at little extra cost
to the user.

Modeling

As we have indicated the main concerns of the mod-
eling community are with the correctness, validation
and con�rmation of models.

We report elsewhere [5, 6] on our lightweight
formal methods approach: we built a veri�cation
condition generator in Aldor, an internal language
used in developing the computer algebra systems
axi.om and Maple, and are currently developing this
work in collaboration with NAG Ltd. The veri�ca-
tion conditions are generated at compile time from
user annotations, typically recording pre- and post-
conditions, and can be passed to a theorem prover
or used for information or documentation.

Our original motivation was particularly that of
assisting the user of libraries where the code it-
self might be trusted, but the assumptions or pre-
conditions for its correct use were ill-documented.
We are currently experimenting with the use of
these annotations for documenting requirements
and assumptions in legacy models.

However there appear to be some di�erences be-
tween the needs here and those of design or require-
ments engineering: in particular there are cases
where it seems useful to record assumptions or do-
main knowledge that does not a�ect the state or
output of the module where it is recorded or as-
sumed, but may be signi�cant elsewhere. It is
not entirely obvious to us how to map the mod-



eling pipeline to frameworks such as the reference
model of Gunter et al [10], which is based on do-
main knowledge, requirements, speci�cations, pro-
gram and program platform.

We note that these matters are beginning to
receive commercial attention: Lemma 1 Ltd [23]
report on their ClawZ system which translates
Simulink diagrams into Z speci�cations, and the UK
company QSS [33] have interfaced their DOORS re-
quirements tool to Simulink.

8 Some new directions

The previous section paints a somewhat depress-
ing picture, suggesting that many areas which have
received considerable research attention are unlikely
to have much e�ect on the practice of modeling. We
might sum up by observing that the modeling com-
munity are users rather than creators of mathemat-
ics and software, and by and large take both the
mathematical theories underlying their work and
the largely commercial computer systems that im-
plement them pretty much for granted as \solved
problems". The main concerns lie elsewhere and
there is little interest in or motivation for change,
and a heavy personal and �nancial investment in
existing technologies.

We can none-the-less outline some ways ahead.
The modeling community, like many others, are in-
terested in new methods that �t their present world
view, address their main concerns or improve or ex-
tend existing techniques or software.
The correctness, validation and con�rmation

of models is of primary importance to the mod-
eling community, and of particular concern when
these impact public policy in matters such as nu-
clear waste disposal. It is the assumptions, data
and choice of model that seem to matter here, not
questions about correctness of the underlying math-
ematics or software once the model has been cho-
sen. We are not even aware of a suitable framework
for the analysis of requirements, speci�cations, as-
sumptions and proof obligations for modeling within
our pipeline: an extension of the reference model of
Gunter et al [10] may be appropriate. Computa-
tional logic has a useful role to play in monitoring
and analysis here, and hence in reasoning directly
about the assumptions of the \model world", the
\model" and the \implementation".
Heterogeneous distributed models are of par-
ticular current interest, put together for example
across the Internet, with disparate or legacy com-
ponents where assumptions may be concealed, con-

tradictory, or have changed over time. An engine for
managing requirements and assumptions would be
a key component technology of robust architectures
for linking such heterogeneous models. Particular
care would need to be taken over the layering issues
indicated above. Projects such as Open Math [30],
which attempt to provide reliable interface mecha-
nisms for heterogeneous mathematical systems us-
ing type inference seem relevant here also.
New analytic, numerical or visualization

techniques which leverage o� the established
mathematical and computational framework and
extend its functionality are of interest. For exam-
ple, as we have seen, computer algebra systems are
useful in the analytic study of dynamical systems,
especially those with parameters, but these are error
prone: extending them using computational logic
engines as we have indicated above adds function-
ality at little cost to the user.
Symbolic analysis Numerical analysis software
does continuous mathematics numerically, com-
puter algebra software does continuous mathemat-
ics symbolically by algebraic means, but no software
yet does continuous mathematics symbolically by
analytic means, and it is not clear how it should be
done. As we have indicated this is the underlying
reason for the de�ciencies of computer algebra sys-
tems: solving it would indeed make possible a new
generation of useful computational tools. It is not
enough to formalize existing computer algebra sys-
tems based on di�erential rings: these will not give
us true computational analysis. It is not enough to
prove theorems about real analysis inside a theorem
prover: we need to be able to do computations like
those described in Section 3 as well.

We urge the formal methods and computational
logic community to take up these challenges.

Acknowledgements

The author acknowledges support from the UK
EPSRC under grant GR/L48256 and from NAG
Ltd, with additional sabbatical support from SRI
Menlo Park and the UK Royal Academy of Engi-
neering. She thanks colleagues at Waterloo Maple,
Mathworks, MathEngine and NAG Ltd, and in the
Schools of Mathematics and of Biological Sciences
at St Andrews, and the Departments of Mathemat-
ics and of Geology at Stanford for helpful discus-
sions: any misrepresentations here are her own.



References

[1] A Adams, H Gottliebsen, S Linton, U Martin.
VSDITLU: a veri�ed symbolic de�nite integral ta-
ble look-up Proc CADE 16, LNAI 1632, 112-126,
Springer 1999

[2] M. Bronstein. Symbolic integration. I. Springer,
1997.

[3] Research Index, http://citeseer.nj.nec.com/cs

[4] N de Bruijn, The mathematical Language AU-
TOMATH, its usage, and some of its extensions, Sym-
posium on Automatic Demonstration, Lecture Notes
in Mathematics 125, Springer 1968

[5] Martin Dunstan, Tom Kelsey, Steve Linton and Ur-
sula Martin Lightweight formal methods for computer
algebra systems In ISSAC'98, ACM Press, 1998

[6] Martin Dunstan, Tom Kelsey, Steve Linton and Ur-
sula Martin Formal Methods for Extensions to CAS
Proc FM'99, LNCS 1709, 1758-1777, Springer 1999

[7] B. Dutertre. Elements of Mathematical Analysis in
PVS. Proc TPHOLS 9, LNCS 1125, Springer 1996.

[8] S Feferman, Why a little bit goes a long way: Logical
foundations of scienti�cally applicable mathematics,
in PSA 1992, Vol. II, 442-455, 1993.

[9] M E Gilpin and F J Ayala, Global models of growth
and competition, Proc Nat Acad Sci USA 70, 3590-
3593, 1973

[10] Carl A Gunter et al, A reference model for require-
ments and speci�cations, to appear IEEE Software.

[11] C A S Hall, Assessment of theoretical models, Eco-
logical Modeling 43, 5-31, 1988

[12] J Hammersley, Maxims for manipulators, Bull I M
A 9 (1973) 276.

[13] J Harrison, Floating point veri�cation in HOL. In
Proc TPHOLS 8, LNCS 971, 186-199, Springer 1995

[14] J Harrison, Constructing the Real Numbers in
HOL, Formal Methods in System Design 5 (1994) 35-
59

[15] Leslie Hatton, The T-experiments: errors in scien-
ti�c software, IEE Computational Science and Engi-
neering, 4, 27-38, 1997

[16] Leslie Hatton, personal communication.

[17] Thomas Henzinger and Pei-Hsin Ho, HyTech: The
Cornell Hybrid Technology Tool, Hybrid Systems II,
LNCS 999, 265-294, Springer, 1995.

[18] N Higham, Accuracy and Stability of Numerical
Algorithms, SIAM Press 1996

[19] R D Jenks and R S Sutor, axi.om: The Scienti�c
Computation System, Springer 1992

[20] M Jirstrand, Nonlinear Control System Design by
Quanti�er Elimination, Journal of Symbolic Compu-
tation, 24, 137-152, 1997.

[21] W Kahan, http://www.cs.berkeley.edu/ kahan

[22] B Latour and S Woolgar, Laboratory Life: the So-
cial Construction of Scienti�c Facts, Sage, London,
1979

[23] ClawZ: Lemma 1 Ltd, http://www.lemma-one.com

[24] Donald Mackenzie, The uninvention of nuclear
weapons, Chapter 10 of Knowing Machines, MIT
Press 1998.

[25] U Martin Computers, reasoning and mathematical
practice In Computational Logic, NATO Adv. Sci.
Inst. Ser. F Comput. Systems Sci., Springer 1998

[26] U Martin and H Gottliebsen, Computational logic
support for di�erential equations and mathematical
modeling, submitted.

[27] Matlab, http://www.matlab.com

[28] D Mooney and R Swift, A course in mathematical
modeling, MAA press, 1999

[29] NAG Libraries, http://www.nag.co.uk

[30] OpenMath, http://www.openmath.org

[31] N Oreskes et al, Veri�cation, validation and con-
�rmation of numerical models in the earth sciences,
Science 263, 1994, 641{646

[32] S Owre, S Rajah, J Rushby, N Shankar. PVS: com-
bining speci�cation, proof checking, and model check-
ing. In Proc CAV 8, LNCS 1102, 411-414 Springer,
1996

[33] DOORS, http://www.requirements.com

[34] Martin Sch�onert et al, GAP: groups, algorithms,
and programming, www-gap.st-and.ac.uk

[35] J Sethian, Level Set Methods and Fast Marching
Methods: Evolving Interfaces in Computational Ge-
ometry, Fluid Mechanics, Computer Vision, and Ma-
terials Science, Cambridge University Press, 1999

[36] Simulink, http://www.simulink.com

[37] M Wester, Computer Algebra Systems : A Practi-
cal Guide, Wiley 1999

[38] Westpoint Consortium, Interdisciplinary Lively
Application Projects, MAA Press, 1997

[39] K Shrader-Frechette, Science Versus Educated
Guessing: Risk Assessment, Nuclear Waste, and Pub-
lic Policy, BioScience 46, 1996


